Temporal Persistence Explains Mice Exploration in a Labyrinth

Umesh K Singla (usingla@princeton.edu)
Princeton Neuroscience Institute, Princeton University
Department of Computer Science, UC San Diego

Marcelo G Mattar (marcelo.mattar @nyu.edu)
Department of Psychology and Center for Neural Science, New York University
Department of Cognitive Science, UC San Diego

Abstract

Exploration in sequential decision problems is a computation-
ally challenging problem. Yet, animals exhibit effective ex-
ploration strategies, discovering shortcuts and efficient routes
toward rewarding sites. Characterizing this efficiency in an-
imal exploration is an important goal in many areas of re-
search, from ecology to psychology and neuroscience to ma-
chine learning. In this study, we aim to understand the explo-
ration behavior of animals freely navigating a complex maze
with many decision points. We propose an algorithm based
on a few simple principles of animal movement from foraging
studies in ecology and formalized using reinforcement learn-
ing. Our approach not only captures the search efficiency and
turning biases of real animals but also uncovers longer spatial
and temporal dependencies in the decisions of animals during
their exploration of the maze. Through this work, we aspire to
unveil a novel approach in cognitive science of drawing inter-
disciplinary inspiration to advancing the field’s understanding
of complex decision-making.
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Introduction

Exploration plays a fundamental role in animal survival. Un-
derstanding the exploratory and search behavior of humans
and animals is a key focus in diverse scientific fields. The
dynamics of exploration in neuroscience have been studied
across mostly shorter temporal scales: from characterizing
choice behavior in two-alternative forced choice tasks (Costa,
Mitz, & Averbeck, 2019), to studying head turns on encoun-
tering a novel object (Gharbawie, Whishaw, & Whishaw,
2004; Gordon, Fonio, & Ahissar, 2014), to studying kinemat-
ics of exploration in closed circular arenas (Tchernichovski,
Benjamini, & Golani, 1998). Yet, relatively few studies have
tried to model animals’ exploratory behavior in larger or more
complex environments, such as the ones actually faced by an-
imals in the real world. This study aims to fill that gap.

The natural world is full of complex environments that re-
quire animals to navigate through intricate paths and make
decisions based on their surroundings. As such, exploration
and search strategies ought to be much more complicated in
real settings. Neuroscience and psychology experiments of-
ten fall short of replicating that complexity and involve sub-
stantial human interference, limiting what we can learn about
true animal behavior. This is in contrast to the field of spa-
tial ecology, which has focused extensively on studying ani-
mal movement in naturalistic settings, from prey hunting in
plain fields to bird migrations across oceans (Viswanathan,

Da Luz, Raposo, & Stanley, 2011). For instance, Lévy walks
in ecology are known to capture animal movement at larger
spatial scales or longer temporal scales (Viswanathan et al.,
1999). During Lévy walks, animals persist in a certain di-
rection, which helps them expand their search territory faster
and avoid getting stuck in a local region. However, there is
a gap in the exchange of ideas between ecology and neu-
roscience (Berman, Kardan, Kotabe, Nusbaum, & London,
2019), partly because of the differences in the scale of inves-
tigation of the two fields.

Recent advances in machine learning have enabled animal
tracking with high precision, enabling an increase in the use
of complex environments that contain many choice points to
study animal behavior (Vallianatou, Alonso, Aleman, Gen-
zel, & Stella, 2021; Nagy et al., 2020). One such experi-
ment recently conducted by Rosenberg, Zhang, Perona, and
Meister (2021) involves ten mice, each exploring a complex
labyrinth for close to seven hours without any human inter-
ference whatsoever. Animals had access to sufficient food
and water in the home cage connected to the maze. Curi-
ously, even though the maze offered no explicit reward, an-
imals continued to enter and exit the maze throughout the
night to explore (Figure 1). While this behavior supports the
role of intrinsic motivation in driving animals to explore, the
structure and remarkable efficiency exhibited in their explo-
ration strategies constitute a perfect example of the complex
and naturalistic behavior that remains poorly understood in
the behavioral sciences. In their original paper, Rosenberg et
al. (2021) characterized the animals’ exploratory behavior us-
ing a computational model composed of four parameters that
governed the probabilities of actions at each junction. How-
ever, this model was tailored to the specific dataset and maze
layout. As such, it remains unclear if there are general com-
putational principles capable of explaining the efficiency of
animal exploration in this and other complex environments.
Such principles should, ideally, also relate to known tenets of
animal movement in spatial ecology.

In this study, we propose a candidate principle meeting
these desiderata. Using the maze exploration data from
Rosenberg et al. (2021) as a case study, we built an explo-
ration agent based on a few simple principles of animal move-
ment from foraging studies and formalized using the frame-
work of reinforcement learning (RL). Our main hypothesis is
that, during exploration, animals rely on temporal abstraction
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Figure 1: The exploratory behavior of animals exhibits rich structure. (a) The maze environment and a sample trajectory of
an animal. The maze is connected to a homecage with food. Mice could move freely between the homecage and the maze. The
colorbar denotes time elapsed since entering the maze. (b) The maze is structured as a complete binary tree with 63 T-junctions
at levels 0-5 and 64 leaf nodes at level 6. (c) A random walk agent simulated for the same number of time steps as the mouse in
(a). Random walk agent often gets stuck in a small region of the maze. (d) Pie chart shows animals spend on average over 95%
of the experiment time exploring the maze. ‘Leave’ indicates the portion when animals are directed towards the home cage.
Figures for panels (a), (b) and (d) adapted from Rosenberg et al. (2021).

to circumvent the complexity of sequential decision-making,
giving rise to stereotyped action sequences. Computation-
ally, we express this hypothesis in terms of a temporally-
extended e-greedy algorithm, recently proposed as a general
exploration framework in RL by Dabney, Ostrovski, and Bar-
reto (2020). Temporally-extended e-greedy uses temporal ab-
straction to yield efficient exploration in a range of RL set-
tings. However, while Dabney et al. (2020) only compared
this algorithm against perfect memory agents or neural net-
works, here we test its ability to explain naturalistic animal
behavior.

Our results show that a temporally persistent €-greedy
agent captures the exploration efficiency and the turning bi-
ases observed in the mouse navigation. Despite its simplicity,
it outperforms several other exploration algorithms, including
the more complex and less parsimonious model proposed in
the original paper (Rosenberg et al., 2021). These results sug-
gest that once the animals have chosen a sequence of actions
to travel in a certain direction, they do not make decisions
at intermediate turns. As such, a behavioral action policy
that specifies longer spatial and temporal dependencies will
serve more suitably in capturing animal actions as opposed
to one made of fixed local rules. Further, we also show that
the mice exhibit superdiffusive movement, similar to doing
Lévy walks, within the maze and are optimizing for search
efficiency. Our work makes a novel contribution to the field
of cognitive science by providing a parsimonious character-
ization of the exploratory behavior of animals in a complex
maze.

Approach

Mouse maze dataset

This study consists of a re-analysis of an existing dataset,
which we briefly describe here (Rosenberg et al., 2021). In
this study, mice freely navigate in a maze. The maze is an

enclosed complex labyrinth connected to a home cage via a
short tunnel (Figure 1a). The logical structure of the maze
is a binary tree, with 6 levels of branches, from home to 64
leaf nodes. The levels are numbered O, 1, ..., 6 where level
0 is the central point of the maze and at level 6 are the leaf
or end nodes (Figure 1b). The animal is initially kept in the
home cage and, at time 0, the tunnel opens and the animal is
free to travel between the cage and the maze. The maze is
constructed with maximal symmetry around the center point.
There are a total of 10 mice subjects that performed the ex-
periment, and for each subject, six keypoints (nose, tail, and
4 limbs) were recorded continuously. We use the nose key-
point trajectories as the behavior data in our analysis. One
out of the 10 subjects did not travel beyond first few cells;
this animal was excluded from all subsequent analysis. While
there is a second set of experiments done on an another group
of 10 mice that are rewarded with water inside the maze, we
chose to only focus on the unrewarded animals as our primary
aim in this study was to understand the animals’ exploration
strategies in the absence of external motivators. See the orig-
inal study for more details on maze construction.

Models of exploration in mouse maze

We formalize the problem of exploration in the current maze
as a Markov Decision Process (MDP). The set of states con-
stitutes all the 63 nodes at T-junctions, 64 end nodes and the
home node. At each of the 63 T-junctions in the maze, there
are 3 actions available to go-left (L), go-right (R) or go-back
(B). On the binary tree, the action L and R take the agent one
level deeper into the maze where the action B takes the agent
up to the parent level. At each of the 64 end nodes, the only
action is to go back and at Home, the only action is to go to
node 0. The transition probability matrix is entirely determin-
istic and assumed to be known. There is 0 reward throughout
the maze.

In this task, animals may follow a variety of exploration



strategies, each associated with a distinct computational cost
and efficiency level. The efficiency of an agent is heavily
dependent on its ability to maintain memories of past ex-
plorations. On one hand, an agent can have perfect mem-
ory which can enable it to store a complete mental map of
the world and perform an efficient systematic search (e.g.,
breadth-first search, depth-first search, etc.). In the other ex-
treme case, an agent that has zero memory should exhibit
completely random behavior. In between these two extremes,
lie a wide range of exploration strategies with limited mem-
ory and computational demands. Accordingly, we next de-
scribe a few families of algorithms that we explored as plau-
sible descriptions of the observed exploratory behavior by the
mice in the maze.

Temporally-persistent e-greedy exploration A common
strategy used in RL to promote exploration in sequential envi-
ronments is e-greedy. However, in a reward-sparse or reward-
free environment, relying on an €-greedy strategy can be very
inefficient (Dabney et al., 2020). In e-greedy, the probabil-
ity of being able to move away from one part of the envi-
ronment to another reduces exponentially with the number of
steps required. To tackle this, Dabney et al. (2020) recently
proposed a temporally-extended version of €-greedy as a gen-
eral exploration framework. Rather than sampling an action
at every time step, this algorithm instead samples a sequence
of actions and executes this “composite” action. These com-
posite actions, also known as options in the hierarchical RL
literature, abstract away the intermediate steps and allow flex-
ible behavioral policies (Sutton, Precup, & Singh, 1999). The
temporally-extended €-greedy strategy requires choosing an
exploration probability € and an appropriate set of options O.
Then, as with vanilla e-greedy, it samples an option w with
probability € or follows the current policy with probability
1 —¢&. For purely exploratory settings, we set € = 1, so that
the agent always samples an option, eliminating the need to
specify a baseline policy and a learning algorithm. We make
this assumption not only for parsimony but also because there
can be no reward-based learning of a policy in a reward-free
environment.

We adopt a simplification of temporally-extended e-greedy
for the problem of spatial exploration, called €z-greedy
(Dabney et al., 2020). ez-greedy constructs an option wy,
that takes the same action a for n time steps and terminates
(Figure 2a). One example of an option for n = 3 would
be “moving forward 3 steps” where the primitive action is
“moving forward”. The complete set of options O is made
up of all such “action-repeats”, for all combinations of valid
actions and durations where the duration n is sampled from
some distribution z. These “action-repeats” allow an agent
to persist in one direction and not get stuck in a local region,
in contrast to a vanilla e-greedy agent. To test €z-greedy
on our data, we construct an appropriate set of options that
encode a similar sense of directional persistence in our maze
environment. In open-field foraging studies, animals have
been observed to follow a similar principle of directional

persistence in the form of Lévy walks. However, the notion
of persisting in a certain direction is easily interpreted for an
open field but for an environment with walls and obstacles
such as our maze, “following a direction” could have several
definitions.

The simplest set of options in our maze that encode persist-
ing in a direction for duration n could be composed of all valid
sequences of 7 nodes starting at a node (Figure 2b). The for-
ward direction defined this way corresponds to going deeper
into the maze, however, an agent that considers all such for-
ward options behaves as if it is traversing the maze binary tree
with no consideration to the particular physical embedding of
that tree. We refine our definition of “forward” to account for
the given spatial layout of the maze and only consider those
forward options that take the agent the farthest starting from
that node and require minimum amount of changes in orien-
tation. In this maze, these correspond to options consisting
of alternate turns at subsequent junctions (Figure 2c and 2d).
Similarly, we defined the backwards direction as the oppo-
site of moving forward, taking actions to go out of the maze
(Figure 2b). Lastly, when the agent hits an end node, it sam-
ples from all n-length options starting from that node (Figure
2e). Note that if the sampled duration n is long and the agent
reaches a state where further movement in that direction is
not possible, the option is prematurely terminated. For the
duration distribution, we use the heavy-tailed Lévy distribu-
tion z(n) ~ n~* with u = 2. Being heavy-tailed, it samples a
lot of short steps and spends time in one region before switch-
ing to a different region when a large step is sampled. Such
heavy-tailed Lévy distributions have been observed in many
animal foraging studies in ecology (Viswanathan et al., 1999,
2011).

Biased Walk Rosenberg et al. (2021) proposed a Biased
Walk model in their paper to capture the maze exploration
that uses four parameters estimated from the animal data.
These 4 parameters define the probability of an action at a
junction depending on the previous action taken. In a way,
Biased Walk is also introducing correlations between consec-
utive steps of animals. However, it is important to note that
these parameters are specific to the given data and the envi-
ronment, and as such, their generalizability may be limited.
Refer to Rosenberg et al. (2021) for more details.

Uncertainty-based exploration In RL, Bayesian Q-
learning extends the traditional Q-learning algorithm to
model uncertainty in the estimated values of state-action pairs
(Dearden, Friedman, & Russell, 1998). Instead of having a
fixed Q-value for each state-action pair, Bayesian Q-learning
maintains a probability distribution over possible Q-values.
This distribution captures the uncertainty associated with the
estimated value of each action in a given state which is then
used to guide exploration. Actions with higher uncertainty
are then greedily chosen during the exploration. We imple-
ment an agent that uses the standard deviation of a normal
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Figure 2: Algorithmic implementation of £z-greedy in the maze task. (a) The set of primitive actions (black) and few
possible temporally-extended actions, or options, of variable length timesteps (red) shown for an open grid world environment.
Open circle denotes the state where an option is initiated and the solid circle denotes its termination. (b) All forward (red)
and backward (green) options of length 4 starting at node S in the maze. Pink-shaded cell denotes where the agent is arriving
from. (c) Zoomed-in view of the region around node S shown with only a few options depicted for visual clarity. Approximate
extent of the maze covered on choosing various forward options. Action sequences that alternate left and right at T-junctions
give the most space coverage (dark blue arrows) and take the agent the farthest. (d) Visualization of the final set of forward
and backward sequences considered as the set of options to sample from. The figure depicts options of length 1 at node B and
of length 2 at node A in the maze. Options of length 2 are curved to indicate a “jump” and the absence of decision-making at
intermediate T-junctions. (e) Visualization of the set of options of length 1 and length 2 at two different end nodes E and F.

distribution around a fixed value of 0 as uncertainty measure
for each Q-value. As the agent gains more experience, the
uncertainty in the Q-values decreases and this normal distri-
bution gets narrower over time.

Results

We simulate the €z-greedy exploration agent as well as a ran-
dom walk, an optimal walker based on Depth-First Search,
Biased Walk and a Bayesian uncertainty agent. We simulate
each agent for equal number of time steps (7" = 25000) and
assess the performance of these agents by employing diverse
metrics derived from many aspects of the behavior data. The
Biased Walk simulations are specific to each animal and are
simulated using the parameters computed from its trajectory
data (Rosenberg et al., 2021). The ez-greedy uses no param-
eters apart from the Lévy distribution for sampling durations
and is purely generative.

Efficient movement in the maze with ez-greedy model of
exploration. We sought to first compare how close the €z-
greedy agent is to the animals at covering the spatial extent
of the maze. We use the definition of exploration efficiency
from the original study as the total number of nodes vis-
ited Njq ¢ required to survey half the end nodes, and define
E = 32/Njpqs. The optimal agent with perfect memory visits
the end nodes systematically without any repeats, resulting in
an efficiency of £ = 1.0. A random agent with no memory
repeats a node before having visited all of them results in an
efficiency of E = 0.23 when simulated. The exploration ef-
ficiencies observed for animals lie in the middle of the two,
with an average of E = 0.39 £ 0.03. The €z-greedy model
gives an efficiency of E = 0.35 and accounts for 91% of the
variance observed in the animals’ efficiencies. The Biased
Walk shows an average efficiency of E = 0.33 +£0.03 and ac-
counts for 85% of the variance observed. Figure 4a plots for
two animals the number of distinct end nodes found as a func-

tion of the total number of end nodes visited, as a measure of
exploration efficiency over multiple window sizes. A sample
trajectory simulated for each agent is shown in Figure 3. Even
though the Biased Walk closely approximates the exploration
efficiency values of animals achieved by the z-greedy model,
the two models demonstrate distinct movement behaviors in
the maze (Figure 3). Notably, the €z-greedy agent seeks to
cover a much larger extent of the space within the same time-
frame compared to the Biased Walk. The uncertainty-based
agent exhibits a very systematic behavior and performs very
efficiently; however, at the expense of requiring intensive
computations and keeping track of probabilities.

ez-greedy recovers the turning biases of animals. We
next asked if the €z-greedy agent follows similar rules of ex-
ploration as the animals do. Rosenberg et al. (2021) found
strong biases by animals at decision points that were remark-
ably consistent across animals. Animals exhibited a strong
preference to go forward at T-junctions (Psr, Ppr) and alter-
nate at turns left and right (Psy4), as well as a mild preference
to turn into stem (Pgs). Their Biased Walk model is based
on this set of 4 biases to govern decisions at each turn during
exploration. We calculate the same set of probabilities us-
ing the simulated trajectory data of the €z-greedy agent. The
ez-greedy model recovers all the four turning biases within
~ 90% of animals’ values (Figure 4b). €z-greedy does show
a higher forward bias (Psr) indicating a slightly higher direc-
tional persistence in our model than animals. Rosenberg et
al. (2021) had speculated on the presence of these consistent
biases in animals in their paper, questioning if such rules are
genetic. However, we show that just adhering to the general
principle of directional persistence in an environment is suf-
ficient to replicate these biases.

ez-greedy exhibits outwards tendency similar to animals
during exploration. Rosenberg et al. (2021) made a keen
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Figure 3: Simulations. (a). A random walk (top) and Lévy walk (bottom) simulated in an open field for 1000 steps. A sample
episode for (b) Biased Walk, (c) Uncertainty-based agent, and (d) €z-greedy agent simulated for 100 steps in the maze.

observation in their study that animals showed a strong pref-
erence for certain end nodes during their exploration of the
maze. To quantify this, they measured the fraction of visits
to the nodes at the periphery of the maze (outer nodes) com-
pared to the visits to the innermost end nodes of the maze
(Rosenberg et al., 2021). The outer nodes were favored by a
factor of 2.3 £0.55 to the innermost 16 end nodes for various
animals. The €z-greedy agent by design prefers traveling long
distances in a certain direction. The outer nodes in the maze
are reachable by alternating straight paths and the forward op-
tions favor those alternating paths as the agent enters a region,
therefore, €z-greedy exhibits a similar outgoing tendency as
animals. The €z-greedy agent shows an outward preference of
2.28, which is in range of the most animals whereas Biased
Walk shows an outward preference of 1.98 +0.19 (Figure 4c).
The random walk, optimal or uncertainty agents do not favor
any nodes to visit and hence exhibit no such preference.

ez-greedy reduces the average uncertainty in decisions at
a junction. To assess the quality of the various models ob-
jectively, Rosenberg et al. (2021) attempted to separate out
the predictable component from the intrinsic randomness in
an animal’s decision. They defined cross-entropy between
a model’s predictions and the animal’s observed actions at
each of the 63 T-junctions as a measure of remaining uncer-
tainty about an animal’s decision. Rosenberg et al. (2021)
developed a Markov-chain model that used the current node
and preceding k nodes to predict the animal’s next action at a
junction. Using cross-validation, the authors found the best k
to be ~3 for most animals and the minimum cross-entropies
ranged from 1.23 —1.37 bits/action on the test data. Note that
the Markov chain model has a parameter associated with each
k-length sequence of nodes leading to a total of 63 - 3* param-
eters. Given the exhaustive nature of this model and limited
data availability, we treat this cross-entropy as a soft upper
bound on the true source entropy of the animal behavior. A
dependence on history size of k = 3 indicates that the animal’s
choice behavior is influenced by its current location and ~3
locations preceding it. This is in line with our hypothesis of
the presence of long-range correlations in the movement of
animals in the maze.

We were interested in seeing how close the ez-greedy gets
to the above sophisticated Markov-chain model in reducing
the intrinsic uncertainty. We computed the cross-entropies
on the simulated data of €z-greedy for various history depths.
The ez-greedy produces the minimum cross-entropy of 1.35
bits at a history depth of preceding 3 nodes (Figure 4d).
Biased Walk, simulated using each animal’s bias parame-
ters, produces the cross-entropy of 1.47+0.02 bits/action and
shows a dependence on only 2 preceding nodes. In hindsight,
this is expected as the Biased Walk specifies correlations be-
tween any two consecutive steps, whereas an €z-greedy agent
has the capacity to introduce correlations at both short and
long time scales in action sequences. Down from an uncer-
tainty of log,3 = 1.59 bits for a random agent to 1.35 for
ez-greedy, this indicates a reduction of over 15% in the av-
erage uncertainty over decisions by incorporating temporal
persistence in actions.

Discussion

We found that a temporally-persistent €-greedy agent cap-
tures the exploration behavior of animals in the maze very
well. However, its main strength lies in its interpretability
over other models of maze behavior. The exploration move-
ment patterns of humans and animals in open environments
are known to be superdiffusive in nature and resemble Lévy
walks (Viswanathan et al., 2011). Lévy walks exhibit an in-
termittent behavior where it spends some time searching in
one region before relocating to another (Lomholt, Tal, Met-
zler, & Joseph, 2008). The success of €z-greedy model im-
plies that mice exhibit superdiffusive movement within the
maze and are optimizing for search efficiency. This further
suggests that 1) the animals alternate between relocating and
search phases in their exploration in the maze (Figure 4e),
and 2) once the animals have chosen to go in a certain di-
rection, they do not make decisions at intermediate turns but
continue to persist in that direction. By segregating the learn-
ing process and the innate mechanical aspects of a behav-
ior, models like €z-greedy serve additional purpose by aiding
in the selection of the appropriate formulation of the action
space and the behavior policies. We now know the mice take
short and long-range actions, so an RL policy that considers
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Figure 4: A temporally-persistent e-greedy agent captures the behavior well. (a) Exploration efficiency plotted for: mouse
D8 (red); ez-greedy agent (cyan), Biased Walk (green), Uncertainty-based agent (yellow); optimal agent (black); a random
walk (blue). (Right) Same for another mouse B7. (b) Turning biases of animals compared with biases obtained from simulated
trajectory data for €z-greedy, uncertainty agent and random walker. (c) Outer node preferences of individual animals and their
corresponding Biased Walks, with mean values highlighted, and compared with €z-greedy agent, uncertainty agent and random
walk. (d) Cross-entropy of the Markov-chain model with depth 3 for each animal compared with corresponding Biased Walks
when predicting the decisions of the animal at T-junctions. Solid cyan line represents the cross-entropy for an €z-greedy agent.
Dotted line represents the random walk agent with 1/3 probability of each action. (e) The interpretation of animals behavior in
the maze as intermittent searches (alternating between relocating and searching in the corners).

a spatiotemporally flexible action space is going to be more
effective than the one trying to learn only the action one step
ahead. To our knowledge, majority of existing research on
animal behavior has focused on exploration in open fields;
therefore, our findings make a unique and valuable contribu-
tion to the field. The Biased Walk model, by introducing cor-
relations at a single albeit dominant temporal scale, proves
effective in approximating certain aspects of mice behavior
but falls short in providing any general significance.

The effectiveness of €z-greedy model in explaining maze
behavior highlights further aspects of mice’s cognitive abil-
ities. Being able to execute a temporally-extended option
in this maze indicates that mice can sample and execute a
“jump” in arbitrary directions, even when those directions
appear to be obstructed by the presence of maze walls. This
could suggest that mice are not constrained to choosing where
to go solely from what is currently within their field of vi-
sion; instead, they are able to choose any arbitrary direction
within the maze and follow a direct path towards the chosen
direction. This hints at mice’s capability of intentional and
non-visually guided movement in the maze, implying a de-
gree of flexibility in their spatial decision-making. This is in
contrast to the Biased Walk, which specifies the probabilities
of only the adjacent nodes, impeding any potential for encod-
ing long-term intention or multi-step planning. The ability to

choose arbitrary directions might suggest a capacity for both
allocentric and egocentric spatial awareness (Rinaldi et al.,
2020; Vijayabaskaran & Cheng, 2022).

We also want to highlight that many ecological studies
have found multiple search models to be effective at explain-
ing the same animal movement data. Distinguishing among
them is challenging as the discretization granularity of the an-
imal trajectories can impact our conclusion of the underlying
process (Palyulin, Chechkin, & Metzler, 2014; Bartumeus, da
Luz, Viswanathan, & Catalan, 2005). It is therefore important
to not fixate on the precise nature of options or the exact du-
ration distribution used; but instead to focus on the relevance
of the general idea of scale-free temporal persistence when
modeling animal behavior in larger environments.

A limitation of our study is that we do not consider the
learning aspects during exploration. Additional efforts could
be directed towards characterizing their learning, internal
states or intrinsic motivation of animals. Animal behavior
is complex. Through our study, we emphasize it is important
to acknowledge and account for this complexity if we were
to understand the relationship between behavior and neural
activity. Our results highlight that richer accounts are neces-
sary even to explain apparently simple behaviors. Conducting
additional studies would significantly enhance our ability to
draw insights into animal exploration and planning strategies.
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