
Learning and Planning in Reinforcement Learning

Umesh Singla

Oct 30, 2023

Fig. Mattar and Daw, Nature Neuroscience, 2018.

Outline

● Introduction
○ Problem of RL
○ RL Framework: MDP
○ Value Functions

● Model-free RL
○ Temporal Difference learning
○ Q-learning

● Model-based RL
○ Learning and Planning: Dyna-Q

Reinforcement Learning

How can autonomous decision-making agents learn from experience in the world?

Fig. Precup, D. Neuromatch Academy.

Reinforcement Learning

Gupta et al (2010); Wikenheiser & Redish (2014)

FoodShock

Reinforcement Learning

Value Learning

World Learning

Decision-Making

Exploring

Planning

…

Rosenberg et al., 2022

Challenges of RL

● How to learn in noisy environments?

● When to explore, versus when to exploit?

● How to learn from delayed and immediate rewards?

● How to navigate complex worlds with tractable manageable models?

● How to prove computational guarantees (e.g., convergence, optimality)?

Computational framework for RL

How do we formalize this process? How
do we handle uncertainty?

We define a Markov decision process.

Adapted from: Precup, D., DeWitt, E. and Mattar, M.G, Neuromatch Academy

Computational framework for RL

● At every time step t, the agent perceives the state of the environment.
● Based on this perception, it chooses an action.
● The action causes the agent to receive a numerical reward, and the agent

uses this information to improve its future actions.
● Objective: Find a way of choosing actions, called a policy which maximizes

the agent's long-term expected return.

Adapted from: DeWitt, E. and Mattar, M.G, Neuromatch Academy

MDP

A Markov decision process (MDP) is defined by the following:

● A state space S
● An action space A
● Transition probabilities

P(s' | s, a) = P(St+1= s' | St=s, At=a)

that indicate, at any time t, how frequently an agent moves from state s to state s' after
taking action a.

● A reward function R(s, s', a), providing immediate feedback when the agent takes action a
in state s and moves to state s'.
Rewards are scalar: the higher, the better.

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Example

s ∈ S board position and results of roll of
dice

a ∈ A one of any allowed moves
agent moves

opponent rolls dice

opponent moves

agent rolls dice

 P(s' | s, a) ~+1 if agent wins the game

R(s) = -1 if agent loses the game

0 for all previous positions

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Policy and their expected returns

A policy 𝞹 : S → A is a mapping of states to actions.

Experience under policy 𝞹

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Expected Return i.e. Value

the expected value of the

discounted infinite-horizon return,

starting in state s at time t=0,

and following policy 𝞹.

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Value Functions

expected return,

starting in state s,

following policy 𝞹

expected return,

starting from state s,

taking action a,
then following policy 𝞹

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Bellman equation for State Value function

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Bellman equations for V and Q

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Model-free approach

Consider the model {S, A, P(s'|s,a), R(s)} defined by an MDP.

If we know the model, we can learn and plan using policy or value iteration.

But what if we don’t know the model i.e. P(s'|s,a) and R(s)?

Can we learn the value function or optimal policy directly from experience?

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Temporal Difference error

How to estimate the mean of a random variable X from IID samples?

x1, x2, x3, x4, x5, x6, x7, x8, x9,....

We do incremental update:

Initialize: 𝝁0 = 0

Update: 𝝁t = (1 - 𝛼) 𝝁t-1 + 𝛼xt for 𝛼 ∈ (0, 1)

The update is a convex sum of the old estimate and latest sample. It can also be written as:

𝝁t = 𝝁t-1 + 𝛼 (xt - 𝝁t-1)
The corrective term (xt - 𝝁t-1) is known as temporal difference.

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Temporal Difference (TD) learning

How to estimate V𝝿(s) from experience without knowing P(s' | s, 𝝿(s))?

Bellman Equation (with model):

Temporal difference estimation (without model):

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

TD & Q-learning

TD learning:

Q-learning:

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Q-learning

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Initialize 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴.

Loop for each episode:

A. 𝑆 ← current (non-terminal) state
B. 𝐴 ← greedy(𝑆, 𝑄)
C. Take action 𝐴; observe resultant reward, 𝑅, and state, 𝑆′
D. 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 [𝑅 + 𝛾 max𝑎𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)]

Example: Q-learning

One-step update per episode

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Learning vs Planning

Jensen et al., 2023. bioRxiv.

Learning vs Planning

Instead of learning values from experience, planning is the process of computing
action values from a model.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Model-free

Model-based

What is a model?

Adapted from: DeWitt, E. and Mattar, M.G, Neuromatch Academy

What is a model?

A model is a representation of how the world will respond to the agent's actions.

Adapted from: DeWitt, E. and Mattar, M.G, Neuromatch Academy

Dyna-Q: Adding planning to Q-learning agent

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q: Adding planning to Q-learning agent

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q

Initialize 𝑄(𝑠, 𝑎) and 𝑀𝑜𝑑𝑒𝑙(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴.

Loop forever:

A. 𝑆 ← current (nonterminal) state
B. 𝐴 ← greedy(𝑆, 𝑄)
C. Take action 𝐴; observe resultant reward, 𝑅, and state, 𝑆′
D. 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 [𝑅 + 𝛾 max𝑎𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)]
E. 𝑀𝑜𝑑𝑒𝑙(𝑆, 𝐴) ← 𝑅, 𝑆′
F. Loop repeat n times:

a. 𝑆 ← random previously observed state
b. 𝐴 ← random action previously taken in 𝑆
c. 𝑅, 𝑆′ ← 𝑀𝑜𝑑𝑒𝑙(𝑆, 𝐴)
d. 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 [𝑅 + 𝛾 maxa𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)]

model learning

planning

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Example

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

