Umesh Singla
Oct 30, 2023

Fig. Mattar and Daw, Nature Neuroscience, 2018.

Outline

e Introduction

o Problem of RL
o RL Framework: MDP
o Value Functions

e Model-free RL

o Temporal Difference learning
o Q-learning

e Model-based RL

o Learning and Planning: Dyna-Q

Reinforcement Learning

How can autonomous decision-making agents learn from experience in the world?

Environment

. omp—

Reward: Food or shock Reward: Numbers

Fig. Precup, D. Neuromatch Academy.

Reinforcement Learning

Shock) X y <= Food

Gupta et al (2010); Wikenheiser & Redish (2014)

Reinforcement Learning

Value Learning
World Learning
Decision-Making
@ Exploring

Planning

Rosenberg et al., 2022

Challenges of RL

e How to learn in noisy environments?

e When to explore, versus when to exploit?

e How to learn from delayed and immediate rewards?

e How to navigate complex worlds with tractable manageable models?

e How to prove computational guarantees (e.g., convergence, optimality)?

Computational framework for RL

How do we formalize this process? How
do we handle uncertainty?

Environment

We define a Markov decision process.

Adapted from: Precup, D., DeWitt, E. and Mattar, M.G, Neuromatch Academy

Computational framework for RL

—» agent

state s,

ion
reward r, artkin &

L environment «—

e At every time step t, the agent perceives the state of the environment.

Based on this perception, it chooses an action.

e The action causes the agent to receive a numerical reward, and the agent
uses this information to improve its future actions.

e Objective: Find a way of choosing actions, called a policy which maximizes
the agent's long-term expected return.

Adapted from: DeWitt, E. and Mattar, M.G, Neuromatch Academy

MDP

A Markov decision process (MDP) is defined by the following:

— agent

e A state space S state s,
e An action space A roward Y,
e Transition probabilities

action a,

environment «——

P(s'| s, a) = P(S,,,=s'| SFs, A=a)
that indicate, at any time t, how frequently an agent moves from state s to state s’ after
taking action a.

e Areward function R(s, s, a), providing immediate feedback when the agent takes action a
in state s and moves to state s’.

Rewards are scalar: the higher, the better.

MDP = {S, A, P(s'|s,a), R(s,s,a)}

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Example

—— agent

state s, action
reward r, &
environment ¢«——
SES board position and results of roll of
dice ~
agent moves
a€EA one of any allowed moves
opponent rolls dice
+1 if agent wins the game P(s'|s,a)~ <

opponent moves
R(s) = < -1 if agent loses the game

agent rolls dice

0 for all previous positions (.
-

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Policy and their expected returns

A policy 7 : S — A is a mapping of states to actions.

Experience under policy 7

(s0) m(s1)
state sy > 81 S

reward rp ri r

v

Adapted from: Lawrence Saul, Probabilistic Reasoning an

d Decision-Making. UC San Diego 2020

Expected Return i.e. Value

the expected value of the

discounted infinite-horizon return,
E” —
S50=S

27 "R(st)
t=0

starting in state s at time =0,

and following policy m.

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Value Functions

expected return,

So=S starting in state s,

V™(s) = E™|) v'R(st)
t=0

following policy m

expected return,

starting from state s,

So=S,ap—=4a

E™|> v'R(st)

t=0

Q"(s,)

taking action a,

then following policy

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Bellman equation for State Value function

V™(s) = ET [R(so) +vR(s1) + V°R(s2) + - - - ‘ so=s]

= R(s) + v Z P(s'|s, m(s)) E™ [R(sl) +YR(s2) + - - -

51:5’]

= R(s) + vE™ {R(sl) +vR(s) + - -

S0 :SJ

= R(s) + 7v)_P(s'|s,n(s)) V7(s')

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Bellman equations for V and Q

V7(s) R(s) + v P(s's,m(s)) V™(s')

Q% (s,a) R(s) + v) P(s'|s,a) V(s

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Model-free approach

— agent

state s,

action
reward I ay

environment ¢«—

Consider the model {S, A, P(s'ls,a), R(s)} defined by an MDP.
If we know the model, we can learn and plan using policy or value iteration.

But what if we don’t know the model i.e. P(s’|s,a) and R(s)?

Can we learn the value function or optimal policy directly from experience?

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Temporal Difference error

How to estimate the mean of a random variable X from 1ID samples?

We do incremental update:

Initialize: u, =0

Update: u, = (1-a)u , +ax fora €(0,1)

The update is a convex sum of the old estimate and latest sample. It can also be written as:

= p,tax-p,)

The corrective term (x, - u, ,) is known as temporal difference.

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Temporal Difference (TD) learning

How to estimate V"(s) from experience without knowing P(s'| s, n(s))?

Bellman Equation (with model):

VT(s) = R(s) + 7Y P(sls, m(s))V™(s)

Temporal difference estimation (without model):

Initialize: Vo(s) = 0 forall seS8

Update: Viii(s:) = Vi(s:) + a[rt + v Vi(st11) —Vt(st)]
N~ ™ ~~ 4
previous TD target
estimate

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

TD & Q-learning

TD learning:
Initialize: Vo(s) = 0 forall se8§
Update: Vii(s:) = Vi(s) + a[rt —I—nyt(StH)—Vt(st)]
N g’ b ~~ 4
previous TD target
estimate

Q-learning:

Qr+1(st;at) = Qi(st,ar) + a[rt + v max Q¢(st+1,3’) — Qt(st,at)]

N—— a’
N
1 W
previous
estimate TD target

Adapted from: Lawrence Saul, Probabilistic Reasoning and Decision-Making. UC San Diego 2020

Q-learning

Initialize Q(s, a) forall s € S and a € A.
Loop for each episode:

S « current (non-terminal) state

A <« greedy(S, Q)

Take action A; observe resultant reward, R, and state, §'
(S, A) < O(S, A) + a [R +y max O(S, a) = O(S, A)]

OCoOw»

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Example: Q-learning

+

actions

§

One-step update per episode

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Learning vs Planning

episode (T =20 seconds)

A

trial 1 trial 2 ... next trials

(13 steps) (4 steps)

Iﬁ—l—l H—| o

% hidden goal

— explore — — exploit ——-------oooree-

.. next episode

-

trial 1 ...next trials
(5 steps)

_— explore — — exploit —----------

Jensen et al., 2023. bioRXxiv.

Learning vs Planning

Instead of learning values from experience, planning is the process of computing
action values from a model.

Model-free
learning
real experience » Vvalue/policy
Model-based
planning

mode| — Value/policy

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

What is a model?

reward
rl
:4 Vivg
: |Sz+1

Environment

action
at

Adapted from: DeWitt, E. and Mattar, M.G, Neuromatch Academy

What is a model?

A model is a representation of how the world will respond to the agent's actions.

N
(rode)

state reward action
St i a
Ly
|< -
" 5., | Environment

Adapted from: DeWitt, E. and Mattar, M.G, Neuromatch Academy

Dyna-Q: Adding planning to Q-learning agent

value/policy
acting
direct
RL
experience

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q: Adding planning to Q-learning agent
value/policy

acting

planning direct

RL

model experience

\

model
learning

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

value/policy

Dyna-Q

planning direct

RL

Initialize QO(s, a) and Model(s, a) for all s € S and a € A. e . uloncs

Loop forever: _/

model
learning

S < current (nonterminal) state
A <« greedy(S, Q)
Take action A; observe resultant reward, R, and state, §'
O(S, A) < O(S, A) + a [R + y max O(S', a) = O(S, A)]
Model(S, A) <— R, S’ } model learning
Loop repeat n times:
a. S < random previously observed state
b. A < random action previously taken in § planning
C. R,S < Model(S, A)
d. 0O(S,A) < QO(S,A) + a[R+y max O(S', a) = O(S, A)]

mmoO O w >

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q

/

P/oli/cy/value functions

direct RL
update

real
experience

[Environmentj

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Dyna-Q

VAR

A \
P/olicy/value functjons

planning update

direct RL simulated

update experience
real 1
experience
search
learning control
Model

[Environmentj

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

Example

actions

WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)

| G sanafillnall [c

} AsaB AR }

S S saflnaid K
~ ===~

] OlEN EEE
===

800
600
Steps 0 planning steps
per 400 (direct RL only)

episode 5 planning steps

50 planning steps
200

14+

|
2 10 20 30 40 50

Episodes

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

